Главная Регистрация Статистика Контакты RSS 2.0
   
 
 
Навигация
Главная Все статьи сайта Мировые новости Обратная связь Непрочитанное
 
 
Базовые дисциплины
Анатомия Физиология и этология Латинский язык Цитология Гистология Эмбриология Микробиология Иммунология Генетика Вирусология Фармакология и токсикология
 
 
Естественно-научные дисциплины
Химия Биохимия
 
 
Специальные и клинические дисциплины
Патология Акушерство и гинекология Эпизоотология, инфекционные болезни Паразитология и инвазионные болезни Внутренние незаразные болезни Хирургия
 
 
Другие дисциплины
Зоогигиена Разведение Кормление, кормопроизводство
 
 
Ветеринарная онлайн-библиотека » Новости » Генетика микроорганизмов (Учебно-методическое пособие)

Новости , Генетика : Генетика микроорганизмов (Учебно-методическое пособие)
автор: Admin 9 августа 2009 просмотров: 70908






передаваться к клетке реципиенту без наличия факторов переноса.

Различают следующие виды плазмид: Соl-фактор - колициногенный фактор, F-фактор - фактор фертильности, R-фактор - фактор устойчивости к лекарственным веществам, плазмиды биодеградации, плазмиды, кодирующие факторы вирулентности у микроорганизмов (Ent, Hly, Sal, K и т. д.)

Col-факторы - это плазмиды, контролирующие синтез бактериоцинов, обладающих способностью подавлять развитие филогенетических родственных бактерий. Название бактериоциногенов присваивают с учетом вида микроорганизмов их продуцирующих. В настоящее время известно, что практически почти все патогенные бактерии продуцируют бактериоцины.

Бактериоцины кишечной палочки называют колицины, стаффилококка - стаффилоцины, пневмококка - пневмоцины, вибриона - вибриоцины и т. д.. Лучше других бактериоцинов изучены колицины. Культуры кишечной палочки, продуцирующие колицины, называют колициногенами, а чувствительные к ним - колициночуствительными . Колицины - вещества белковой природы. Они обладают способностью ингибировать синтез ДНК, РНК, белка, вызывать гибель клетки не нарушая ее целостности. Колицины обладают летальным признаком, т. е. после их продукции бактериальная клетка может погибнуть. Колицины функционируют аналогично антибиотикам с узким спектром действия, обладают свойствами эндодезоксирибонуклеаз.

Бактериальные клетки, выделяющие бактерицины, устойчивы к действию гомологичных бактерицинов окружающей среды.

F-фактор может функционировать автономно и может быть в интегрированном, как эписома, состоянии. Этот фактор представляет собой кольцевую ДНК длиной 30-32 нм, молекула которой детерминирует перенос генетического материала из клетки донора в клетку реципиента, синтез половых ворсинок, синтез ферментов, способность к автономной репликации и т. д.

R-фактор генетическая структура, обеспечивающая устойчивость к лекарственным препаратам. Эта структура несет гены лекарственной устойчивости (ч-гены). Устойчивость к одному или нескольким лекарственным препаратам (антибиотикам) осуществляется за счет оперонов и может быть передана путем коньюгации и трансдукции.

Плазмиды биодеградации ответственны за использование органических соединений бактериями в качестве источников углерода и энергии, за утилизацию ряда сахаров, образование протеолитических ферментов.

Ent-плазмиды кодируют образование энтеротоксинов у энтеробактерий, Hly-плазмида - синтез гемолизинов у энтеропатогенных микроорганизмов и стрептококков. Sal-плазмида контролирует у псевдомонад использование бактериями салицилатов благодаря выработке предназначенного для этой цели фермента.

 

Последовательности и транспозоны.

 

Кроме упомянутых выше генетических элементов (плазмиды, эписомы) у микроорганизмов наличествуют подвижные генетические элементы - последовательности и транспозоны, которые могут кодировать свою собственную транспозицию (перенос) от одного нуклеоида к другому или же между нуклеоидом и плазмидами. Такой перенос обусловлен способностью подвижных генетических элементов определять синтез ферментов транспозиции и рекомбинации - транспозаз.

Инсертиционные (вставочные) последовательности (is-элементы, от английского insertion - вставка, sequence - последовательность) обладают следующими свойствами. Они способны перемещаться по геному, реплицируя при этом is-элемент. В процессе репликации первичный экземпляр остается на месте, а копия встраивается в мишень, почти не обладающей специфичностью. Функции, обеспечивающие способность к перемещению (транспозиции) закодированы в самом is-элементе. Транспозиция весьма редкое событие, которое происходит реже, чем спонтанные мутации. В местах смежных по отношению к инсерции возникают делеции и инверсии бактериальных геномов. Встроенная инсерция может либо активировать транскрипцию соседних генов, либо ингибировать их активность. Is-элементы обеспечивают взаимодействие между нуклеоидом, плазмидами и эписомами. В свободном состоянии is-последовательности не обнаружены.

Транспозоны состоят из 2500-20000 и более пар нуклеотидов и могут быть в свободном состоянии в виде кольцевой молекулы, которая обладает способностью перемещаться из хромосомы в плазмиды и наоборот, мигрируя с репликона на репликон. Некоторые умеренные фаги, например Ми-бактериофаг E. Coli, устроены аналогично и представляют собой гигантские транспозоны. Транспозоны могут быть носителями информации отвечающей за продуцирование токсинов и ферментов, ингибирующих антибиотики.

 

10. БИОЛОГИЧЕСКИЙ СИНТЕЗ БЕЛКА

 

Биологический синтез белка является очень сложным многоступенчатым процессом. В настоящее время доказано, что биосинтез белка происходит не в ядре, а в цитоплазме. Непосредственного участия в синтезе белка ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации о химическом составе и структуре белков, хранящийся в ДНК, в полипептидную цепь определенного белка выполняют рибонуклеиновые кислоты (и-РНК, т-РНК). Большое значение в биосинтезе белка имеет информационная РНК. Она выполняет роль матрицы. Количество образующихся на ДНК молекул и-РНК определяется числом генов, контролирующих у определенного организма синтез специфических белков. Каждый белок требует для синтеза свой и-РНК, одна молекула которой «списывает» последовательность нуклеотидов с участка ДНК, равному одному гену, а затем, и-РНК переносит эту информацию на последовательность расположения аминокислот в полипептидной цепи белка. Информационная РНК из ядра проникает в цитоплазму и действует на рибосомах по отношению к белкам, как матрица.

Биосинтез белка начинается с процесса под названием транскрипция (от английского transcription - переписывание, копия). На участке определенного гена молекулы ДНК синтезируется м-РНК. Синтез м-РНК осуществляется с помощью многих ферментов, но главная роль принадлежит РНК-полимеразе, которая прикрепляется к начальной точке молекулы ДНК инициации транскрипции под названием промотор, расплетает двойную спираль и синтезирует м-РНК. Промотор расположен перед геном и у эукариотов включает около 80, а у вирусов и бактерий около 10 нуклеотидов.

РНК-полимераза движется вдоль гена и ведет синтез и-РНК. Синтезированная молекула м-РНК отделяется от ДНК, а участки гена на которых образовалась эта кислота, вновь соединяются. Окончание синтеза м-РНК определяет участок, который получил название - терминатор. Нуклеотиды промотора и терминатора узнают специфические белки, которые регулируют активность РНК-полимеразы.

В настоящее время доказано, что сначала синтезируется предшественни м-РНК так называемая про-м-РНК. Эта кислота имеет большие размеры, чем м-РНК и содержит фрагменты не кодирующие синтез пептидной цепи определенного белка. Связано это с тем, что в ДНК наряду с участками кодирующими р-РНК, т-РНК и полипептиды имеются фрагменты не несущие генетической информации. Эти фрагменты получили название интронов, а кодирующие фрагменты названы экзонами. После образования про-и-РНК, происходит процесс созревания м-РНК, который получил название процессинга. В процессе созревания м-РНК интроны удаляются специальными ферментами, а информативные участки (экзоны) соединяются между собой в строгом порядке с помощью ферментов лигаз. Этот процесс называется сплайсингом  (от английского splice - сращивать). Биологическое значение и роль интронов остаются не ясными. Однако, установлено, что при считывании в ДНК только экзонов, зрелая м-РНК не образуется.

Следующим этапом биосинтеза является трансляция, которая происходит в цитоплазме на рибосомах. Суть ее в том, что последовательность расположения нуклеопептидов в м-РНК переводится в строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка.  Этот процесс протекает при активном участии т-РНК и состоит из активирования аминокислот и непосредственного синтеза белковой молекулы. Свободные аминокислоты активируются и присоединяются к т-РНК при помощи фермента аминоацил-т-РНК-синтеталы. Активированные аминокислоты т-РНК доставляются на рибосомы. Эти органоиды цитоплазмы состоят из двух субчастиц, одна из которых имеет константу седиментации 30 S, вторая 50 S. Молекула м-РНК выходит из ядра в цитоплазму и прикрепляется к малой субчастице рибосомы. Сигналом к трансляции служит стартовый кодон АУГ. Когда т-РНК доставляет к рибосоме активированную аминокислоту, ее антикодон соединяется с комплементарным кодоном м-РНК. Акцепторный конец т-РНК с соответствующей аминокислотой присоединяется к







 
 
Ключевые теги: клетка, бактерии, микроорганизмы, белок, синтез, вирус, кислоты
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо зайти на сайт под своим именем.

Другие новости по теме:

  • Лекции по гистологии (основы цитологии)
  • Вирусология как наука (лекция)
  • Молекулярная патологическая физиология (Патологическая физиология, глава из ...
  • Лекции по гистологии (мышечные ткани)
  • Лекции по гистологии (эпителиальные ткани, классификация)


  •  (голосов: 12)
     
     
     
    Авторизация
    Логин:
    Пароль:
     
     
    Партнёры
     
    Календарь
    «    Апрель 2018    »
    ПнВтСрЧтПтСбВс
     
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
     
     
    Метки
    бактерии, Болезнь, вакцина, вещество, Вирус, Возбудитель, гормоны, железы, животные, заболевание, инфекция, кислота, кислоты, кишечник, клетка, клетки, корм, кровь, Лечение, матка, мозг, молоко, натрий, оболочка, опухоль, организм, органы, печень, препарат, процесс, раствор, реакция, свиньи, скот, сосуды, сыворотка, телята, температура, ткани, функции

    Показать все теги
     
    Рекомендуем
     
     
     
    Каталог : Анатомия Физиология и этология Латинский язык Гистология Эмбриология Микробиология Вирусология Генетика Фармакология и токсикология Биохимия Патология Акушерство и гинекология Эпизоотология, инфекционные болезни Паразитология и инвазионные болезни Внутренние незаразные болезни Хирургия Зоогигиена Разведение животных Кормление, кормопроизводство
    При использовании материалов сайта, гиперссылка на на www.vetlib.ru обязательна. 
    Copyright © 2009-2017 VetLib.ru